
Rahul BhadaniECE 492 - The University of Arizona rahulbhadani.github.io

CAT VEHICLE REU 2019

Rahul Bhadani <rahulbhadani@email.arizona.edu>

1

A crash course on Object-oriented programming

mailto:rahulbhadani@email.arizona.edu

Rahul BhadaniECE 492 - The University of Arizona

Before we proceed ...

- This session assumes that you all have some sort of
programming background.

- You are familiar with basic programming constructs such
variables, keywords, if, switch, for loop, etc.

- I had posted on piazza last week for you to go through a
Udacity course on C++
https://www.udacity.com/course/c-for-programmers--ud210

2

https://www.udacity.com/course/c-for-programmers--ud210

Rahul BhadaniECE 492 - The University of Arizona

Procedural programming

- In traditional programming, a program is divided into
functions (also called as procedures, hence procedural
programming) to give it modularity

- Generally, no link between data and functions
- Flat structure of the program
- Data scope or visibility is only limited to functions
- Difficult to manage a large program

3

Rahul BhadaniECE 492 - The University of Arizona

Object-oriented programming
(OOP)

- As programs grow it is difficult to manage them
- Procedural programming doesn’t hide not required to be

exposed
- OOP overcomes above shortcomings
- OOP hide data, only to be exposed by relevant functions
- Creates program in nested modularity
- Provides different ways of accessing mechanism: public,

private and protected.

4

Rahul BhadaniECE 492 - The University of Arizona

Central concepts in OOP

- Encapsulation
- Polymorphism
- Inheritance

5

Rahul BhadaniECE 492 - The University of Arizona

Encapsulation

- Everything in C++ revolved
around class.

- A class is an abstract data type
(ADT)

- A class contains data definitions
and implementation of
procedures

- A class can be used to create
different instances

6

Rahul BhadaniECE 492 - The University of Arizona

Encapsulation
#include<iostream>

#include<cstring>

#include<cstdlib>

using namespace std;

7

class person

{

private:

string name;

unsigned int ssn;

public:

void setName(string n) { this->name = n; }

void setSsn(unsigned int SSN) { this->ssn = SSN; }

string getName() { return this->name; }

unsigned int getSsn() { return this->ssn; }

};

scope

Rahul BhadaniECE 492 - The University of Arizona

Encapsulation

int main()

{

person tony;

tony.setName("tony");

tony.setSsn(144142342);

cout << tony.getName()<<endl;

return 0;
}

Save it as person.cpp
8

Compiling the program:

In the terminal, navigate to the directory where
you saved the file person.cpp

$ g++ person.cpp

This will create an executable a.out

$./a.out

Output will be:

tony

Rahul BhadaniECE 492 - The University of Arizona

A few things about scope
- In previous slide you must have note public, private keywords

- These are called as scope.

- There are three of them: public, private, protected

- public: accessible through dot operator from anywhere outside the class, but within the
program

- private: can’t be access or viewed by dot operator outside the class. Only the class and its
friend function can access it

- protected: similar to private but can be accessed in child class; it will be clear when we talk
about inheritance.

9

Rahul BhadaniECE 492 - The University of Arizona

Encapsulation
- Similar we can create other ‘instances’ of person:
- person peter;
- person steven;
- person natasha;

10

Rahul BhadaniECE 492 - The University of Arizona

Polymorphism
- In a class, a function can have many definition, there are making it more flexible depending on

the type of arguments and/or number of arguments passed to it. This is called as polymorphism.

11

void setName(string firstname, string lastname)

{

this->name = firstname + " " + lastname;

}

void setName(string n)

{

this->name = n;

}

- The above polymorphism is function polymorphism. There is another polymorphism called as
operator polymorphism. I am not going to cover it today, however, you can look up it.

Rahul BhadaniECE 492 - The University of Arizona

Inheritance

- Think about what is the dictionary meaning of inheritance.
- In OOP, inheritance is more or less the same.
- A child class, also known as subclass inheritance some

properties from its parent class called as superclass.
- However, there is some different between dictionary meaning

of inheritance and OOP inheritance.
- Inheritance can be public, private and protected

12

Rahul BhadaniECE 492 - The University of Arizona

Inheritance: An abstract example

13

Person

name: String
Ssn: Unsigned Integer

setName(string): Void
getName() : String
setSsn(Unsigned Integer): Void
getSsn(): Unsigned Integer

Student

university: String
studentId: Unsigned Integer

setUniversity(string): Void
getUniversity() : String
setId(Unsigned Integer): Void
getId(): Unsigned Integer

GraduateStudent

researchAssistant: boolean
IEEEMemberID: Unsigned Integer

setresearchAssistant(boolean): Void
getresearchAssistant() : boolean
setIEEEId(Unsigned Integer): Void
getIEEEId(): Unsigned Integer

Rahul BhadaniECE 492 - The University of Arizona

Inheritenace
class student: public person
{

private:
unsigned int studentId;
string university;

public:
void setStudentId(unsigned int sid)
{

this->studentId = sid;
}
Void setUniversity(string uni)
{

this->university = uni;
}
string getUniversity()
{

return this->university;
}
unsigned int getStudentId()
{

Return this->studentId;
}

}

There are three kind of inheritance mode:

1. public: public members of superclass become the
public members of the subclass, protected members
of the superclass become protected member of the
subclass. Private members of the superclass cannot
be directly accessed by subclass.

2. private: public and protected members of
superclass become the private members of the
subclass. Private members of the superclass cannot
be directly accessed by subclass.

3. protected: public and protected members of
superclass become the protected members of the
subclass. Private members of the superclass cannot
be directly accessed by subclass.

14

Inheritance mode

Rahul BhadaniECE 492 - The University of Arizona

OOP in other languages

- OOP concept also exists in MATLAB and Python as well,
however syntax are slightly different.

15

Rahul BhadaniECE 492 - The University of Arizona

Example in MATLAB
classdef Person

properties(GetAccess='private',SetAccess='private')
 name;
 ssn;
 end

 methods
 function obj = setName(obj, n)
 obj.name = n;
 end
 function obj = setSsn(obj, s)
 obj.ssn = s;
 end
 function SSN = getSsn(obj)
 SSN= obj.ssn;
 end
 function nm = getName(obj)
 nm = obj.name;
 end

 function printName(obj)
 disp(obj.name);
 end
 end
end %End of classdef

16

Save this as Person.m

p = Person;

p = p.setName('Thor');

p.getName()

p.printName();

Implementation: save this file with any
name ending with .m. Then run it.

Rahul BhadaniECE 492 - The University of Arizona

Example in MATLAB: Inheritance
classdef Student < Person

properties(GetAccess='private',SetAccess='private')
 studentId;
 university;
 end

 methods
 function obj = setUniversity(obj, uni)
 obj.university = uni;
 end
 function obj = setSid(obj, sId)
 obj.studentId = sId;
 end
 function SID = getSid(obj)
 SID= obj.studentId;
 end
 function uni = getUniversity(obj)
 uni = obj.university;
 end
 end

end %End of classdef

17

Save this as Student.m

s = Student;

s = s.setName('Loki');

s.getName()

s = s.setSid('2342022');

s.getSid()

Implementation: save this file with any
name ending with .m. Then run it.

Rahul BhadaniECE 492 - The University of Arizona

Example in Python

To run code in python, install
jupyter notebook.
- sudo apt-get install jupyter-notebook

Creating simplest class
class Person:
 pass #empty block - pass keyword does
nothing
p = Person
print(p)

18

Rahul BhadaniECE 492 - The University of Arizona

Example in Python
Functions in class definition with self
class Person:

 def say_hi(self):

 print('How are you?')

p = Person()

p.say_hi()

Previous 2 lines can also be written as Person().say_hi()

Using __init__
The __init__ method is run as soon as an object of a class is
instantiated. This is like constructor in C++ and does the job
of any initialization required for class members, etc.

class Person:

 def __init__(self, name):

 self.name = name

 def say_hi(self):

 print('Hello, my name is ', self.name)

p = Person('Wolverine')

p.say_hi()

19

Here, we define __init__ method with parameters name and self. Here, also by writing self.name, we created
a member variable of class Person with the name name, although it is different from argument name being
passed. Hence, a way of defining object variable is to write self.<variableName> in the __init__ function.

Rahul BhadaniECE 492 - The University of Arizona

Example in Python
Inheritance

In this example, the superclass is SchoolMember and
subclass is Student.

class SchoolMember:

 '''Represents any school member'''

 def __init__(self, name, age):

 self.name = name

 self.age = age

 print('(Initialized SchoolMember:{})'.format(self.name))

 def tell(self):

 '''Tell my details'''

 print('Name:"{}", Age:"{}"'.format(self.name, self.age),
end=" ")

Class student inherits from SchoolMember

class Student(SchoolMember):

 '''Represents a student'''

 def __init__(self, name, age, marks):

 SchoolMember.__init__(self, name, age)

 self.marks = marks

 print('(Initialized Student:{})'.format(self.name))

 def tell(self):

 '''Tell my details'''

 print('Marks:"{}"'.format(self.marks))

s = Student('Cyclops', 24, 99)

20

Rahul BhadaniECE 492 - The University of Arizona

Example in Python
More examples
class Vehicle:

 def __init__(self, wheels_num, tanktype, seat_num,
max_vel):

 self.wheels_num = wheels_num

 self.tanktype = tanktype

 self.seat_num = seat_num

 self.max_vel = max_vel

In python, there is a special way of writing getter and setter of a
member variable

 @property

 def wheels_num(self):

 return self.__wheels_num

 @wheels_num.setter

 def wheels_num(self, number):

 self.__wheels_num = number

def make_noise(self):
 print('VRUUM VRUUM')

21

Rahul BhadaniECE 492 - The University of Arizona

Example in Python
toyota_prius = Vehicle(4, 'hybrid', 5, 100)

print(toyota_prius.wheels_num)

toyota_prius.wheels_num = 2

print(toyota_prius.wheels_num)

toyota_prius.make_noise()

22

Rahul BhadaniECE 492 - The University of Arizona

But this is not enough

- This was a crash course in OOP with some examples in C++,
MATLAB and Python

- I have not covered static variables, constructors, destructors,
friend functions, etc.

- I encourage you to look up an learn about it.

23

Rahul BhadaniECE 492 - The University of Arizona

Some useful references

- https://www.udacity.com/course/c-for-programmers--ud210
- https://www.mathworks.com/help/matlab/matlab_oop/hiera

rchies-of-classes-concepts.html
- http://www.archer.ac.uk/training/course-material/2018/02/o

ofortran-daresbury/Lectures/L02-IntroductionToOO.pdf
- https://www.coursera.org/specializations/data-science-pytho

n

24

https://www.udacity.com/course/c-for-programmers--ud210
https://www.mathworks.com/help/matlab/matlab_oop/hierarchies-of-classes-concepts.html
https://www.mathworks.com/help/matlab/matlab_oop/hierarchies-of-classes-concepts.html
http://www.archer.ac.uk/training/course-material/2018/02/oofortran-daresbury/Lectures/L02-IntroductionToOO.pdf
http://www.archer.ac.uk/training/course-material/2018/02/oofortran-daresbury/Lectures/L02-IntroductionToOO.pdf
https://www.coursera.org/specializations/data-science-python
https://www.coursera.org/specializations/data-science-python

