VvV Vv

THE UNIVERSITY
. OF ARIZONA

CAT VEHICLE REU 2019

A crash course on Object-oriented programming

Rahul Bhadani <rahulbhadani@email.arizona.edu>

ECE 432 - The University of Arizona

mailto:rahulbhadani@email.arizona.edu

THE UNIVERSITY
. OF ARIZONA

Before we proceed ...

- This session assumes that you all have some sort of
programming background.

- You are familiar with basic programming constructs such
variables, keywords, if, switch, for loop, etc.

- T had posted on piazza last week for you to go through a
Udacity course on C++
https://www.udacity.com/course/c-for-programmers--ud210

ECE 432 - The University of Arizona Rahul Bhadani’Q

https://www.udacity.com/course/c-for-programmers--ud210

THE UNIVERSITY
. OF ARIZONA

Procedural programming

- In traditional programming, a program is divided into
functions (also called as procedures, hence procedural
programming) to give it modularity

- Generally, no link between data and functions

- Flat structure of the program

- Data scope or visibility is only limited to functions
- Difficult to manage a large program

ECE 432 - The University of Arizona Rahul Bhadani°

THE UNIVERSITY

Object-oriented programmin@'@ ¥ ARLZENA
(OOP)

- As programs grow it is difficult to manage them

- Procedural programming doesn’t hide not required to be
exposed

- OOP overcomes above shortcomings
- OOP hide data, only to be exposed by relevant functions
- Creates program in nested modularity

- Provides different ways of accessing mechanism: public,
private and protected.

ECE 432 - The University of Arizona Rahul Bhadani’

THE UNIVERSITY
. OF ARIZONA

Central concepts in OOP

- Encapsulation
- Polymorphism
- Inheritance

ECE 432 - The University of Arizona Rahul Bhadanie

Encapsulation

Person

name: String
officeNumber: Integer

getName () : String
setName (String) : Boolean
getOfficeNumber () : Integer

setOfficeNumber (Integer)

ECE 492 -

The University of Arizona

THE UNIVERSITY
. OF ARIZONA

Everything in C++ revolved
around class.

A class is an abstract data type
(ADT)

A class contains data definitions
and implementation of
procedures

A class can be used to create
different instances

Rahul Bhadani’

THE UNIVERSITY
. OF ARIZONA

Encapsulation scope

#include<iostream>
#include<cstring>
#include<cstdlib>

using namespace std;

ECE 432 - The University of Arizona

class person
fey
string name;
unsigned inf ssn;
void setName (string n) { this->name = n; }

void setSsn(unsigned int SSN) { this->ssn = SSN; }

string getName () { return this->name; }

unsigned int getSsn() { return this->ssn; }

Rahul Bhadani°

THE UNIVERSITY

. OF ARIZONA
Encapsulation
Compiling the program:
int main () In the terminal, navigate to the directory where
(you saved the file person.cpp

person tony;

tony.setName ("tony") ; $ g++ person.cpp

tony.setSsn (144142342) ; This will create an executable a.out

cout << tony.getName ()<<endl;
$./a.out

return O: Output will be:

} tony

Save it as person.cpp

ECE 432 - The University of Arizona Rahul Bhadani°

THE UNIVERSITY
. OF ARIZONA

A few things about scope

- In previous slide you must have note public, private keywords
- These are called as scope.
- There are three of them: public, private, protected

- public: accessible through dot operator from anywhere outside the class, but within the
program

- private: can’t be access or viewed by dot operator outside the class. Only the class and its
friend function can access it

- protected: similar to private but can be accessed in child class; it will be clear when we talk
about inheritance.

ECE 432 - The University of Arizona Rahul Bhadani’

THE UNIVERSITY
. OF ARIZONA

Encapsulation

- Similar we can create other ‘instances’ of person:
— person peter;

- Pperson steven;

— person natasha;

ECE 432 - The University of Arizona Rahul Bhadani@

THE UNIVERSITY
. OF ARIZONA

Polymorphism

- In a class, a function can have many definition, there are making it more flexible depending on
the type of arguments and/or number of arguments passed to it. This is called as polymorphism.

void setName (string n) void setName (string firstname, string lastname)

{ {

this->name = n; this->name = firstname + " " 4+ lastname;

- The above polymorphism is function polymorphism. There is another polymorphism called as
operator polymorphism. I am not going to cover it today, however, you can look up it.

ECE 432 - The University of Arizona Rahul Bhadania

THE UNIVERSITY
. OF ARIZONA

Inheritance

- Think about what is the dictionary meaning of inheritance.
- In OOP, inheritance is more or less the same.

- A child class, also known as subclass inheritance some
properties from its parent class called as superclass.

- However, there is some different between dictionary meaning
of inheritance and OOP inheritance.

- Inheritance can be public, private and protected

ECE 432 - The University of Arizona Rahul Bhadani@

THE UNIVERSITY
. OF ARIZONA

Inheritance: An abstract example

Person

name: String
Ssn: Unsigned Integer

setName (string) : Void

getName() : String

setSsn (Unsigned Integer): Void
getSsn(): Unsigned Integer

Student

university: String
studentId: Unsigned Integer

setUniversity(string) : Void GraduateStudent

getUniversity() : String
setId (Unsigned Integer): Void
getId(): Unsigned Integer

researchAssistant: boolean
IEEEMemberID: Unsigned Integer

setresearchAssistant (boolean) : Void
getresearchAssistant() : boolean
setIEEEId (Unsigned Integer) : Void
getIEEEId(): Unsigned Integer

ECE 492 - The University of Arizona Rahul Bhadanie

——

THE UNIVERSITY
. OF ARIZONA

Inheritenace

Inheritance mode

class student: person There are three kind of inheritance mode:
{ private: 1. public: public members of superclass become the
unsigned int studentId; public members of the subclass, protected members
publ isgfing university; of the supel:class become protected member of the
void setStudentId(unsigned int sid) subclass. Private members of the superclass cannot
{ be directly accessed by subclass.

this->studentlId = sid;
}

Void setUniversity(string uni) . .
{ 2., private: public and protected members of

this->university = uni; superclass become the private members of the
b . . subclass. Private members of the superclass cannot
string getUniversity ()

(be directly accessed by subclass.
return this->university;

}
unsigned int getStudentId()

(3. protected: public-and protected members, of
Return this->studentId; superclass become the protected members of the
} subclass. Private members of the superclass cannot
} be directly accessed by subclass.

ECE 432 - The University of Arizona Rahul Bhadani@

THE UNIVERSITY
. OF ARIZONA

OOP in other languages

- OOP concept also exists in MATLAB and Python as well,
however syntax are slightly different.

ECE 432 - The University of Arizona Rahul Bhadanie

THE UNIVERSITY
. OF ARIZONA

Example in MATLAB

Save this as Person.m

classdef Person

properties (GetAccess='private' ,6 SetAccess='private')

name;
ssn;
end Implementation: save this file with any
methods . . name ending with .m. Then run-it.
function obj = setName (obj, n)
obj.name = n;

end
function obj setSsn(obj, s)
obj.ssn = s;
end
function SSN = getSsn (obj)
SSN= obj.ssn;

= Person;

= p.setName ('Thor') ;

‘o T '© ©

end .getName ()
function nm = getName (obj)

3 nm = obj.name; .printName () ’
en

function printName (obj)
disp (obj.name) ;
end
end
end %End of classdef

ECE 432 - The University of Arizona Rahul Bhadani°

THE UNIVERSITY
. OF ARIZONA

Example in MATLAB: Inheritance

Save this as Student.m

classdef Student < Person

properties (GetAccess='private',6 SetAccess='private')

studentId;
i ity
ena oo Implementation: save this file with any
name ending with .m. Then run-it.
methods
function obj = setUniversity(obj, uni)
obj.university = uni;
end - .
function obj = setSid(obj, sId) S Student;
endobj .studentlId = sId; s = s.setName ('Loki') :
function SID = getSid(obj)
SID= obj.studentId; s .getName ()
end
function uni = getUniversity (obj) S = s. setSid(12342022) ;
uni = obj.university;
d .
end s.getSid ()

end %$End of classdef

ECE 432 - The University of Arizona Rahul Bhadani@

THE UNIVERSITY

l h . OF ARIZONA
To run code in python, install =~ Creating simplest class
jupyter notebook. class Person:
- sudo apt-get install jupyter-notebook pass #empty block - pass keyword does
nothing
p = Person
print(p)

ECE 432 - The University of Arizona Rahul Bhadani@

THE UNIVERSITY
. OF ARIZONA

Example in Python

Functions in class definition with self

class Person:
def say_hi(self):
print('How are you?')
p = Person()
p.say_hi()

Previous 2 lines can also be written as Person().say_hi()

Using _ init__
The __init__ method is run as soon as an object of a class is
instantiated. This is like constructor in-C++ and does the job
of any initialization required for class members, etc.
class Person:
def _init_ (self, name):
self.name = name
def say_hi(self):

print('Hello, my name is ', self.name)

p = Person('Wolverine')

p.say_hi()

Here, we define __init_ method with parameters name and self. Here, also by writing self.name, we created
a member variable of class Person with the name name, although it is different from argument name being
passed. Hence, a way of defining object variable is to write self.<variableName> in the __init__ function.

ECE 492 - The University of Arizona

Rahul Bhadani °

P—

THE UNIVERSITY
. OF ARIZONA

Example in Python

Inheritance
In this example, the superclass is SchoolMember and
subclass is Student.

class SchoolMember:

"Represents any school member"
def _init_ (self, name, age):

self.name = name

self.age = age

print('(Initialized SchoolMember:{})".format(self.name))
def tell(self):

""Tell my details

print(‘'Name:"{}", Age:"{}".format(self.name, self.age),
end=|l Il)

ECE 432 - The University of Arizona

Class student inherits from SchoolMember
class Student(SchoolMember):
"Represents a student™
def _init _ (self, name, age, marks):
SchoolMember. _init__ (self, name, age)
self.marks = marks
print(‘(Initialized Student:{})'.format(self.name))
def tell(self):

""Tell my details

print('‘Marks:"{}"".format(self.marks))

s = Student('Cyclops', 24, 99)

Rahul Bhadani°

Example in Python

In python, there is a special way of writing getter and setter of a

More examples

class Vehicle:

def _init_ (self, wheels_num, tanktype, seat num,
max_vel):

self.wheels_num = wheels_num
self.tanktype = tanktype

self.seat_num = seat_num

self.max_vel = max_vel

ECE 432 - The University of Arizona

member variable

@property

def wheels _num(self):
return self.__wheels_num

@wheels_num.setter

def wheels_num(self, number):

self.__wheels_num = number

def make_noise(self):
print('VRUUM VRUUM")

THE UNIVERSITY
. OF ARIZONA

Rahul Bhadani°

THE UNIVERSITY
. OF ARIZONA

Example in Python

toyota_prius = Vehicle(4, 'hybrid', 5, 100)
print(toyota_prius.wheels_num)
toyota_prius.wheels_num = 2
print(toyota_prius.wheels_num)

toyota prius.make_noise()

ECE 432 - The University of Arizona Rahul Bhadanie

THE UNIVERSITY
. OF ARIZONA

But this is not enough

- This was a crash course in OOP with some examples in C++,
MATLAB and Python

- I have not covered static variables, constructors, destructors,
friend functions, etc.

- T encourage you to look up an learn about it.

ECE 432 - The University of Arizona Rahul Bhadanie

K THE}JNNERSITY

QF ARIZG)NA

Some useful references
Y \
\ \
- https://www.udacity.com/course/c- for-pLogrammers——u\de \

\ \
- https://www.mathworks.com/help/matlab/matlab- oop_[hléra\\\\ |
rchies-of-classes- -concepts.html

- http://www.archer.ac.uk/training/course-material /2018 /02 02/6
ofortran-daresbury/Lectures/Lo2- IntI‘OdUCthIlTOOO pdf/ AR

o / |
- https://www.coursera.org/specializations/data- sc1erﬁe—pﬁhp /
Il = e / / /

/ s "/
ECE 432 - The University of Arizona // Rahul Bhada?fg

https://www.udacity.com/course/c-for-programmers--ud210
https://www.mathworks.com/help/matlab/matlab_oop/hierarchies-of-classes-concepts.html
https://www.mathworks.com/help/matlab/matlab_oop/hierarchies-of-classes-concepts.html
http://www.archer.ac.uk/training/course-material/2018/02/oofortran-daresbury/Lectures/L02-IntroductionToOO.pdf
http://www.archer.ac.uk/training/course-material/2018/02/oofortran-daresbury/Lectures/L02-IntroductionToOO.pdf
https://www.coursera.org/specializations/data-science-python
https://www.coursera.org/specializations/data-science-python

