
Running CAT Vehicle Simulation with ROS
ECE 492 CAT Vehicle Research Experience for Undergraduates
June 6, 2019

Rahul Kumar Bhadani rahulbhadani@email.arizona.edu

Contents

1 Introduction 2

2 Pre-requisite 2

3 Downloading the CAT Vehicle Testbed 2
3.1 Create your workspace . 2
3.2 Compiling your workspace . 3
3.3 Download packages . 3

4 Running the simulation 3
4.1 Initiating Gazebo world . 4
4.2 Spawning vehicle models. 4
4.3 Creating a launch file to execute stepvel node from stepvel package 4

c©2018-2020 Compositional Simulation Lab, The University of Arizona (1)

rahulbhadani@email.arizona.edu

1 Introduction

A number of autonomous vehicle application requires a well-established framework capable of produc-
ing multi-vehicle simulation. The application of multi-vehicle simulation ranges from testing vehicle-
following algorithms, traffic simulation, ego vehicle detection, perception and recognition of other
vehicles in the traffic, connected vehicle systems, etc. In this tutorial, we will discuss how to run
autonomous vehicle simulation using the CAT Vehicle testbed implemented in ROS/Gazebo.

2 Pre-requisite

1. Ubuntu 18.04

2. ROS Melodic

3. Gazebo 9.0

4. Packages: ros-melodic-controller-manager, ros-melodic-ros-control ros-melodic-ros-controllers, ros-
melodic-gazebo-ros-control, ros-melodic-velodyne, ros-melodic-joystick-drivers, ros-melodic-novatel-
span-driver

However, a number of packages are required to be built at source since they are not yet able through
apt on melodic. A few of them that I have identified can be downloaded from our lab’s GitHub page
which we detail in later sections.

3 Downloading the CAT Vehicle Testbed

Before we proceed for the simulation, download the catvehicle package from GitHub repository along
with another package obstaclestopper and few other packages to drive the vehicle (kind of) safe. If
you have already done that, you are not required to re-do this step.

Steps for setting up your testbed is reproduced below from the README of the GitHub page
https://github.com/jmscslgroup/catvehicle.

1. Follow the steps mentioned in the ROS wiki page http://wiki.ros.org/melodic/Installation/
Ubuntu%C2%A0 on how to install ROS Melodic.

2. In addition to that we are required to install some additional ros packages

sudo apt-get install ros-melodic-velodyne ros-melodic-novatel-span-driver

3.1 Create your workspace

c©2018-2020 Compositional Simulation Lab, The University of Arizona (2)

https://github.com/jmscslgroup/catvehicle
http://wiki.ros.org/melodic/Installation/Ubuntu%C2%A0
http://wiki.ros.org/melodic/Installation/Ubuntu%C2%A0

rahulbhadani@email.arizona.edu

cd ~

mkdir -p catvehicle_ws/src

cd catvehicle_ws/src

catkin_init_workspace

3.2 Compiling your workspace

cd ~/catvehicle_ws

catkin_make

3.3 Download packages

cd ~/catvehicle_ws/src

git clone https://github.com/jmscslgroup/catvehicle

git clone https://github.com/jmscslgroup/obstaclestopper

git clone https://github.com/jmscslgroup/control_toolbox

git clone https://github.com/jmscslgroup/sicktoolbox

git clone https://github.com/jmscslgroup/sicktoolbox_wrapper

git clone https://github.com/jmscslgroup/stepvel

git clone https://github.com/jmscslgroup/cmdvel2gazebo

cd ../

catkin_make

You will also require to source your setup script file inside the devel folder generated after catkin make

command. Follow the steps below to add the source command to your .bashrc file

echo "source ~/catvehicle_ws/devel/setup.bash" >> ~/.bashrc

source ~/.bashrc

This will make your bash shell aware of presence of catvehicle package and where to find them.

4 Running the simulation

In this section, we will follow step-by-step instructions that will enable you to create a multi-vehicle
simulation.

c©2018-2020 Compositional Simulation Lab, The University of Arizona (3)

rahulbhadani@email.arizona.edu

4.1 Initiating Gazebo world

First, we will create a virtual world in Gazebo where we will later spawn a vehicle model. Open a new
terminal and type:

roslaunch catvehicle catvehicle_empty.launch

This will start gzserver. To view the world, start gzclient by typing following in a new terminal
tab or window (I usually prefer a new tab. You can open a new tab in the same terminal window by
typing Ctrl+Shift+T).

gzclient

You will find that in Gazebo window, there is nothing except an empty plane. In the next step,
we will spawn a vehicle model.

4.2 Spawning vehicle models.

In order to spawn a vehicle model, we will launch catvehicle spawn.launch file. By default the name
of the vehicle and its associated namespace catvehicle and it spawned at origin. You can change the
name/namespace and position of the vehicle by supplying values to option arguments in the run time.
Open another terminal tab or window and type following command:

roslaunch catvehicle catvehicle_spawn.launch robot:=catvehicle X:=0 Y:=20 \

yaw:=1.57079632679

This will spawn a vehicle model with a name catvehicle at (x,y) co-ordinates of (0, 20) with respect
to world frame with of π/2 radian.

To spawn another vehicle model type the same command with different name (supplied through
robot1 argument at a different position.

4.3 Creating a launch file to execute stepvel node from stepvel package

In a new terminal tab or window, open stepvel.launch in the launch folder of the catvehicle package:

Then analyze stepvel.launch you just opened. It has content similar to one reproduced below:

c©2018-2020 Compositional Simulation Lab, The University of Arizona (4)

rahulbhadani@email.arizona.edu

roscd catvehicle/launch

gedit stepvel.launch

<launch>

<param name="enable_statistics" value="true" />

<arg name="leader_robot" default="catvehicle"/>

<arg name="vel" default="2.0"/>

<arg name="strAng" default="0"/>

<group ns="$(arg leader_robot)">

<param name="constVel" value="$(arg vel)"/>

<param name="strAngle" value="$(arg strAng)"/>

<node pkg="stepvel" type="stepvel_node"

name="stepvel_$(arg leader_robot)" output="screen" required="true">

</node>

</group>

</launch>

This file takes three arguments: a robot for the name of the car, vel for velocity and strAng for
steering angle. You can send velocity to a car model by typing following command in a new terminal
window or tab:

roslaunch catvehicle stepvel.launch robot:=batvehicle

You will see in Gazebo that vehicles have started moving. Because of the inherent dynamics of
the car and disturbances due to frictions, unknown disturbances, you will find out that vehicle doesn’t
move with exactly 2m/s (or whatever velocity you choose). You check this by typing rostopic echo

/batvehicle/vel in a new terminal or a tab.
Additionally, you can set parameter constVel and strAngle from stepvel node to change the

input being sent on the topic cmd vel as follows:

rosparam set /catvehicle/strAngle 0.15

rosparam set /catvehicle/constVel 4.15

rosparam set /batvehicle/strAngle 0.05

rosparam set /batvehicle/constVel 7.44

c©2018-2020 Compositional Simulation Lab, The University of Arizona (5)

	Introduction
	Pre-requisite
	Downloading the CAT Vehicle Testbed
	Create your workspace
	Compiling your workspace
	Download packages

	Running the simulation
	Initiating Gazebo world
	Spawning vehicle models.
	Creating a launch file to execute stepvel node from stepvel package

