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In this paper, we present a method to perform multi-vehicle simulation of autonomous systems
that improves the repeatability of robotics simulations and can improve the scale of such simulations
for dynamically complex devices such as autonomous vehicles (AV). Current approaches to simu-
lation of multi-component AV typically infer the kinematics or dynamics through the rigid-body
motion that uses joint angles and shapes. Such simulations encounter challenges for simulated AV,
as the methods to discretize the behavior are prone to error accumulated over time and are compu-
tationally intensive – frequently resulting in chaotic behavior. The accumulated error results in a
lack of repeatability of the simulation results. Further, when simulating multiple AVs, simulations
typically fail to scale to tens of vehicles, even when slowed to permit more accurate results as the
state evolves. This paper provides an architecture for improving the repeatability of simulations
using federated modeling and state synchronization through a director. The method consists of
replacing the inverse kinematic vehicle models with computational models of their dynamics, of-
floading dynamics from the physics engine for state evolution, synchronizing vehicle updates using a
director, and performing the simulation at slower than real-time if needed. Our method reduces the
error of trajectory deviation during repeated simulations by at least threefold. An implementation
of the results of the work is presented through a Robot Operating System (ROS) package.

I. INTRODUCTION

In robotics and autonomous cyber-physical systems
(CPS), simulation provides cost-effective means to un-
cover corner cases and validate a vehicle controller with-
out logistic bottlenecks of field experiments. Modeling
autonomous robotic vehicles requires an understanding
of highly nonlinear models of physical systems. There
are significant works on the understanding of nonlinear
systems [1–3] and its approximation [4–7]. However, non-
linearity causes the system to exhibit sensitivity around
the initial condition and the trajectory evolution diverges
with time. Thus, we may seek a simpler model that
leads to a predictable outcome within permissible accu-
racy. The fragility (lack of repeatability) of such a system
makes it harder to conduct simulations with repeatable
results. For societal-scale CPS, a reliable and repeatable1

simulations are desirable. Repeatability allows peers to
reproduce research, and to assess experimental results
that can support proof of concepts; such simulations are
reasonable tools to study any bias that has been intro-
duced either due to bad experiment design, less-useful
system model2 or incorrect inertial tensor [10] and take
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1 Repeatability is the property of an experiment that yields the

same outcome from several trials, performed at different times
and in different places [8]. Another definition of repeatability
comes from [9] that defines repeatability in robotics as a measure
of the ability of the robot (vehicle) to move back to the same
position and orientation over and over again.

2 Less useful captures the sentiment captured by George E. P. Box
— “All models are wrong, but some are useful”.

necessary measure to discover and eliminate biases. As
autonomous vehicle CPS are intrinsically heterogeneous
in nature and involve complex interaction among compu-
tational, physical, and human components, we think that
taking the approach of federated modeling may be one
way to reduce the complexity of simulation and increase
its repeatability.

Here we present a workaround and an associated soft-
ware tool to achieve repeatable simulation for Connected
and Autonomous Vehicles (CAV) using an existing 3D
simulation framework. Our method uses offloading dy-
namics from the physics engine to federated models, di-
rector for time synchronization, and conducting simu-
lation at slower than real-time for achieving repeatable
results. Our method was able to reduce the root-mean-
square error of trajectory deviation over multiple re-
peated simulations by at least threefold. We emphasize
that our work is about creating methods to provide re-
peatable simulations with popular tools such as ROS-
Gazebo with minimal or no changes to an existing soft-
ware tool. The main results of the paper are highlighted
in Table I.

A. Contribution

We present a workaround to mitigate the fragility and
associated results. Our contribution is as follows.

(i) We develop an architecture for multi-vehicle simu-
lation of autonomous vehicles to facilitate repeat-
able outcomes

(ii) We propose a software tool that works in conjunc-
tion with existing ROS-based simulators to enhance
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FIG. 1. Open-loop control of the simulated vehicle with con-
stant velocity v = 3 m/s and steering angle δ = 0.07065 rad
as per Equation (1). Vehicle simulation in ROS/Gazebo of
the CAT Vehicle Testbed 2.0.2.

FIG. 2. Repeated simulation of the identical input and
identical initial conditions, recorded on multiple machines.
Each curve denotes the trajectory from a different simu-
lation. Colors correspond to simulations on different ma-
chines. Each simulation ran for different amount of time
ranging from 10 s to 120 s approximately. Videos demon-
strating the lack of repeatability can be found on our pub-
lic GitHub repository https://github.com/jmscslgroup/

repeatability-analysis.

the repeatability of simulations.

For the rest of the discussion, we will use the physics
engine and Gazebo interchangeably for simplicity. How-
ever, we should remember that Gazebo is a simulator
that uses physics engines such as Open Dynamics En-
gine, Bullet, and Dart along with a rendering engine.

Section II provides background on the problem dis-
cussed in this paper. Section III formulates the prob-
lem statement. Section IV provides some examples to
demonstrate fragility in simulation using ROS and pro-
poses methods to mitigate those weaknesses. Section V
demonstrates success in achieving repeatable & scalable
simulations. We compare the state-of-the-art (SOTA)
method of simulation in ROS with our proposed method,
called the offloaded dynamics. We conclude the article
with future directions and plan the extension of the cur-
rent work.

II. BACKGROUND

Advanced problems in CAV research involve vehicle-
to-infrastructure and vehicle-to-vehicle communication,
and vehicle control that requires reliable communication.
In such systems, we are increasingly moving from a static

environment to a dynamic one. Such complex scenarios
require a scalable simulation with a common model of
computation, typically through ROS [11] and a physics
engine simulator (e.g. Gazebo) for implementing any ap-
plications either for simulation or for field experiments.
Examples of the use of ROS in physical system exper-
iments for CAVs include ring road experiments for the
dampening of traffic waves with a single automated vehi-
cle [12–14], and demonstration that commercially avail-
able adaptive cruise controllers are not string-stable [15]
using the CAT Vehicle Testbed [16].

Preparations for the experiments in [12] were unable
to rely on simulation prior to the full-scale field experi-
ment due to weaknesses in repeatability and inability to
scale to even tens of vehicles in the ring (the experiment
required over 20 vehicles). Scaling simulation to more
than two vehicles resulted in stochastic disruptions, in-
cluding an abrupt drop of real-time factor (RTF), loss of
messages intended for delivery to respective agents, and
trajectory deviation. While doing evaluations of veloc-
ity controllers, we further found evidence of instability
and lack of repeatable results over several simulations in
the same computer as well as across different computers.
A similar study on simulation fragility seen in CARLA
simulator was reported in [17] where the authors didn’t
demonstrate any solution or workaround strategy to over-
come the fragility of the simulation.

We present an example of fragility with ROS and
Gazebo simulators. Consider the trajectories of repeated
simulations of an autonomous vehicle (AV) under the
open-loop control with fixed speed v = 3 m/s and a
fixed steering angle of δ = 0.07065 rad, that ran for 10 s
to 120 s, as shown in Figure 1, and Figure 2. The sim-
ulation was performed on four machines with different
configurations (varying number of processor cores, RAM,
etc). From the traces of simulation on these machines,
we determined that the outcome of the simulation dif-
fered between machines, as well as on the same machine.
For a feedback control algorithm, deviation in simulation
results has potential issues in terms of repeatability of
the results and could artificially alter the outcome.

Limitations of the existing simulation method motivate
the following questions: What are the factors contribut-
ing to the deviation of simulation results across differ-
ent runs? What are the metrics that define such devia-
tions? What are the ways to achieve repeatability in such
cases without altering software and hardware? We envi-
sion that solving these problems to produce a repeatable
& scalable simulation is key to developing and testing
societal-scale CPS applications such as CAVS, with re-
spect to the safe operation of AVs and their interaction
with the environment. Such simulations are a powerful
tool for developing, and verifying CPS applications and
enabling transfer learning from simulation to hardware,
as these simulations can simulate sensors, delay, and in-
teraction with agents in the 3D world – which is not
possible with microscopic simulators such as Sumo [18],
and Aimsun [19].

https://github.com/jmscslgroup/repeatability-analysis
https://github.com/jmscslgroup/repeatability-analysis
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A. Plausible Reasons for Simulation Fragility

State-of-the-art simulation software may not exhibit
repeatability issues for a small number of vehicles (de-
pending on the availability of RAM, GPU, etc.), but all
simulations begin to degrade when the system load grows.
In other words, those simulations fail to repeat in at-
tempting to scale. Control of an AV simulation requires
the movement of rigid bodies and interaction among bod-
ies in 3D space. Physics engines use differential equations
solvers to compute contact forces in both linear and angu-
lar dimensions and determine state evolution over time.
The overall process is computationally expensive. A sec-
ond challenge is that the simulation of each of the joints
and masses that make up the vehicle is prone to errors
that accumulate over time.

As the vehicle models are made more complicated and
refined, say, by increasing the number of triangular mesh
or actuators, and joints or by spawning more vehicles
in the simulated world, computation slows down to pro-
vide a trade-off between accuracy and performance. One
such trade-off is discussed in [20] where an iterative pro-
cess is used to solve a differential equation. When the
system load is high, the computation needs more time
to return the result and small deviations in error may
accumulate over time. Meanwhile, the simulation en-
gine chooses to advance the simulation by some extrap-
olation techniques. Over time, error accumulates and
the decision-making ability of the controller gets affected
non-deterministically which varies across simulation runs
as agents are making decisions based on data that differ
between different simulation runs. For multi-vehicle sim-
ulations, as the number of vehicles increases, the amount
of messages increases, and beyond a given threshold,
data packets start dropping. This packet-drop is entirely
system-load dependent and hence affects the control de-
cision made by vehicles that are not reproducible.

For a physics engine, floating-point precision is an im-
portant aspect. If system dynamics happen to be chaotic
in nature, the hardware floating precision affects the out-
come as the system evolves. ROS as well as the various
implementation of the physics engine are multi-threaded
and hundreds of processes run in parallel. In such a case,
if an operating system scheduler interrupts jobs being
executed by ROS or physics engine in favor of another
higher priority job, we may end up with non-repeatable
results of the simulation.

III. PROBLEM STATEMENT: FRAGILITY IN
AUTONOMOUS VEHICLE SIMULATION

Consider a plant function f that is used to simulate
a car in a physics engine. We limit the scope of this
paper to velocity control for controlling the positions of
vehicles:

x = f(u) (1)

where x ∈ Rn is the state of the vehicle consisting of
position, heading, and tire angle, and u ∈ Rm is the
control input consisting of velocity and desired steering
angle, and f : Rn×Rm → Rn; n is the size of state vector

and m is the size of input vector. Let f̂ be the discretized
f :

x̂k = f̂(uk) (2)

For examples presented in this article, we use CAT Ve-
hicle simulator [16] implemented in ROS/Gazebo where
a car is controlled by a velocity controller: uk ≡ [vk, δk]
where vk and δk are input velocity and desired steering
angle respectively at a discrete-time with time index k.
In the simulator, f is a kinematic model of the car that
uses ROS for control. Rigid body dynamics is provided
by Gazebo. Further, let ĝ be a discretized plant function
representing the physics engine:

ξk = ĝ(W, f̂ , h, ρ, ψ,J) (3)

where ξk is the state vector representing the overall simu-
lation. In general, ξk is a vector consisting of linear, and
angular positions, linear, and angular velocities of agents,
sensors, and non-actors in the world frame of reference,
W is a vector of applied/external forces and torque on
agents in the simulation. The plant function houses

agents denoted by plant models f̂ ≡ {f̂1, f̂2, · · · , f̂n}. h
is the simulation time-step, and ρ is the maximum up-
date rate of Gazebo. The RTF is a product h × ρ. ψ
denotes simulated sensors in the plant function. J is the
full specification of the AV model with actuators, joints,
and links, and other parameters such as inertial tensor,
frictional coefficients, etc. that are required for simulat-
ing vehicles by physics engine and for calculating contact
forces and collision for rigid body dynamics.

For each pair of simulation runs (either on same com-
puter or different ones), error terms to denote fragility in
vehicle simulation can be calculated as

e(t) =
√

(x(t)sim1 − x(t)sim2)2 + (y(t)sim1 − y(t)sim2)2

(4)

where (x(t), y(t)) denotes coordinates of the vehicle’s tra-
jectory, and subscripts denote different simulation runs.
From Equation (4), we can calculate root mean square
error as overall error for the deviation between trajecto-
ries

E =

√∑N
i=1 e

2
i (t)

N
(5)

where N is the number of coordinate points in the tra-
jectory data. For a repeatable system, the error E across
the simulation should be bounded, i.e., E ± ε where ε
is some uncertainty threshold. However, existing multi-
vehicle simulators lack such bounds.

The original paper in Gazebo [21] mentions the simula-
tor’s limitations in terms of scaling the distributed com-
putation. Simulation using complex models in Gazebo
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fail to provide reliable result in real-time. As a result, the
RTF in Gazebo slows down, data packets are dropped,
and impacts the reliability of the simulation. Reduction
in the RTF depends on the current processor load, avail-
able RAM, and network load, thereby affecting the re-
peatability of the simulation. In such a scenario, our
problem statement is as follows:

1. Design an architecture for multi-vehicle simulation
that can provide repeatable outcomes within E =
±ε.

2. Find a non-intrusive method to achieve repeatabil-
ity that does not require changes to the simulators,
software architecture, or operating system.

3. Demonstrate an integration strategy for ROS and
Gazebo to perform repeatable simulation using a
software tool.

Our findings demonstrate that control of simulated ve-
hicles by federated models and employing a director
for state synchronization provides an elegant solution to
achieve more repeatable results for trajectory simulations
of vehicles.

IV. METHODS: MITIGATING THE
FRAGILITY OF SIMULATION

In ROS-Gazebo simulation, the input control com-
mand actuates joints of the AV model in Gazebo (or
any other physics simulator). Joints through equations
of physics change the state of various links constituting
the vehicle upon actuation. Concurrently, contact forces
between various surfaces are also calculated. This over-
all approach is computationally intensive and may lead
to packet drops and bandwidth bottlenecks, which are
undesirable for real-time control applications. Figure 3
demonstrates the real-time factor of the SOTA method
in ROS for simulated AV driving with constant uk in a
circle for a number of simulations. The RTF deteriorates
as the number of vehicles increases until the RTF is no
longer governed by the product h × ρ. Figure 4 shows
error e(t) as a function of time for a circular trajectory
of a vehicle obtained from a pair of simulations run on
two different machines.

Our method for achieving repeatability and scalabil-
ity is broken down into three parts: (A) offloading the
vehicle dynamics to a federated model, (B) using a direc-
tor model for message handling, processing, and synchro-
nization (C) simulating at an RTF suitable for scalability.

A. Federated Modeling

Instead of simulating vehicles using rigid body dynam-
ics offered by the Gazebo physics engine, we simulate ve-
hicle dynamics through a separate ROS node. Hence, the

FIG. 3. RTF vs the number of vehicles in the simulation with
the SOTA approach. As more number of vehicles are spawned
in the simulation, the RTF increasingly deteriorates. Here,
our desired RTF was 1.0.

FIG. 4. Trajectory deviation as e(t) between two simulation
runs performed on two different computers with same simu-
lation setup using SOTA

car plant f̂ is replaced by x̂∗k = f̂∗(uk) which is decoupled
from Gazebo ĝ. Further, we can throttle down the pub-
lish rate 1/∆T (the rate at which the state of the system
is published) such that 1/∆T < 1/h. Throttling down
avoids overwhelming the data network on ROS when sim-
ulating multiple vehicles and sensors. Thus, instead of
actuating the vehicle model in the physics engine, a fed-
erated model updates the model’s states relative to the
world frame.

We use a bicycle model in Equation (6) as a federated
model instead of 3D rigid body dynamics as used in the

original CAT Vehicle simulator to model a vehicle f̂∗. x1,
x2 are the coordinates of the vehicle’s position. x3 is tire
angle, and x4 is heading angle. Thus, x ≡ [x1, x2, x3, x4].

x1k = x1k + ∆Tvk cos(x3k) cos(x4k)

x2k = x2k + ∆Tvk cos(x3k) sin(x4k)

x3k = x3k + ∆Tδk

x4k = x4k + ∆Tvk · sin(x3k) · (1/L)

(6)

where L is the vehicle’s wheelbase. The evolution of the
system is then governed by Equation (6). The model
feeds back its system velocity, position, and orientation to
determine its position in the specified frame of reference.
We use ROS for the implementation of Equation (6). The
ROS node subscribes to the input velocity and steering
angle and publishes the updated state vector x̂k. x̂k is
used to update the position of the vehicle in the Gazebo
for visualization and interaction with other vehicle mod-
els and simulated sensors. In practice, any arbitrary f̂∗

can be used to govern the vehicle’s state evolution, re-
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placing Equation (6), potentially including hybrid mod-
els that could speed up execution without compromising
accuracy [22].

⁞
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FIG. 5. A director synchronizes the state update for each
agent for predictability and correct action by agents.

B. Synchronization using Director

Due to the way ROS works, physics engines cannot re-
ceive updated states to change the poses of each vehicle
in the 3D world simultaneously. Consider (T1, T2, T3, · · · )
be the spawn time of the each vehicle node in ROS. If
a throttled publish rate for vehicles is 1/∆T , then each
vehicle can produce its update state at Ti + k∆T, i ∈
[1, n]. We introduce a director node that receives the up-

dated state from f̂∗ ≡ {f̂∗1, f̂∗2, · · · , f̂∗n} and decides
when to send these states to Gazebo. The director main-
tains a stack of updated states in each time window ∆T
and propagates updated states once the stack is filled,
emptying the stack in the process. If the stack is not
filled within the ∆T time window, then the stack is dis-
carded and the process repeats. As soon as the stack is
discarded or emptied, the director starts processing the
next time step. The state of the vehicle in Gazebo doesn’t
change until it is directed to do so by the director and
Gazebo stays paused. Without synchronization, even if a
vehicle’s state advances, a follower vehicle in the platoon
will not be able to estimate its leader vehicle using simu-
lated sensors in the 3D world correctly and may affect the
decision-making ability of the deployed controller. We
provide a schematic of the director in Figure 5.

C. Operating at slower than real-time

Reducing the RTF slows down the simulated clock and
hence the number of messages produced per wall-clock
time unit is reduced. This allows a physics engine to
handle messages reliably without significant latency or
message loss. By specifying product h × ρ < 1, we can
execute nodes in slower than real-time. For example h =
0.01 s, ρ = 100 Hz is real-time while h = 0.01 s, ρ = 50 Hz
is half the real-time. As of this work, we choose appropri-
ate RTF by trial-and-error. Thus a Gazebo plant model

with the offloaded dynamics can be abstracted as

ξk = ĝ∗(x̂∗k, h, ρ, ψ,J
′) (7)

where no external/applied force W is provided since the
vehicle state updates are offloaded. x̂∗k are received from
director and h × ρ may be less than 1.0. Unlike Equa-
tion (3), J′ doesn’t need to be full vehicle-specification
but rather a solid body for which inertial tensor is sim-
pler to calculate with greater precision. For comparison,
a pictorial representation of SOTA and offloaded dynam-
ics methods is provided in Figure 6 and Figure 7.
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FIG. 6. SOTA for AV simulation using ROS-Gazebo control.
Vehicle specification consists of various actuators, links, and
joints.
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FIG. 7. Modified approach using offloaded dynamics. Vehicle
specification consists of a solid body devoid of separate links
and joints. f̂∗ computes vehicle dynamics for the state evo-
lution independently. A director synchronizes state updates
from multiple vehicle nodes. The new odometry information
is consumed by Gazebo ĝ∗ to update the vehicle’s state in
the simulated world. The updated vehicle state and sensor
information are fed back for the next time-step. Plugins are
user-written programs to use physics engine APIs.

V. SIMULATION EXPERIMENT AND
RESULTS

In this section, we compare our offloaded dynamics
method from Section IV with SOTA. The SOTA simula-
tion was done using the CAT Vehicle Testbed simulator.
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RMS Error with the SOTA Approach RMS Error with Offloaded Dynamics

Slow Machine Fast Machine Slow Machine Fast Machine

Sim 1 Sim 2 Sim 1 Sim 2 Sim 1 Sim 2 Sim 1 Sim 2

Sim 1 0.953 14.746 16.40 0.396 0.362 0.387
Slow Machine

Sim 2 0.953 15.830 14.110 0.396 0.384 0.369

Sim 1 14.746 15.830 0.362 0.384 0.384
Fast Machine

Sim 2 16.40 14.110 3.338 0.387 0.369 0.384

TABLE I. A comparison of RMS error E across simulations for the SOTA approach and modified approach with offloaded
dynamics.

FIG. 8. A snapshot of the trajectory of the vehicle under fixed
velocity and steering angle control with the SOTA approach.
The simulation was run for 300s. The circumference of the
circular trajectory was 230 m.

FIG. 9. A snapshot of the trajectory of the vehicle under fixed
velocity and steering angle control with offloaded dynamics.
The simulation was run for 300s. The circumference of the
circular trajectory was 230 m.

Next, we conducted a set of simulations with offloaded

vehicle dynamics f̂∗ using Equation (6) and control in-
put u without feedback. Gazebo takes updated x̂∗k and
sets the position of each vehicle in the world frame of
reference. The simulation experiment was conducted us-
ing a high-level python API that we wrote to automate
the overall simulation. At the API level, the simulation
expects the circumference of trajectory, the desired num-

ber of vehicles n to simulate, vehicle model f̂ or f̂∗ and
controller, h, ρ, ∆T for throttling controller output, log-
time, and uk. The API invokes appropriate ROS nodes,
Gazebo, rosbag record for logging data, and controller.
Upon termination of the simulation, we can analyze the
log traces from rosbag files for repeatability.

A. Simulation Results: Assessing the Repeatability

In the first set of simulations, we set u =

[8.0 m/s, 0.071 rad] to control a single-vehicle f̂ using
SOTA approach and f∗ using offloaded dynamics. We
performed this simulation on two different computers, let
us call them slow (4 GB RAM) and fast computers (64
GB RAM). We had a total of 8 simulations: two simu-

lations for the SOTA approach using f̂ and ĝ and two

for offloaded dynamics using f̂∗ and ĝ∗ on each of the
slow and fast computers. A snapshot of the trajectory
for SOTA and offloaded dynamics captured on a slow
computer is shown in Figure 8, and Figure 9. From the
snapshot, it is evident that the trajectories of the vehicle
do not overlap on several rotations with the SOTA ap-
proach (see also Figure 4) while with the newer approach,
it overlaps to greater precision, as evident from the er-
ror plot in Figure 10. For a single vehicle simulation, we
didn’t observe any reduction in RTF in the simulation.

FIG. 10. Trajectory deviation as e(t) between two simulation
runs performed on two different computers with same simu-
lation setup with offloaded dynamics. Compared to Figure 4,
we see the error has dropped almost by 10 fold.

We computed error E as defined in Equation (5) to
quantify how much deviations occur between different
runs within a single machine and between different ma-
chines. Error E is tabulated in Table I for SOTA, and
offloaded dynamics.

B. Scaling the Simualtion

We wanted to assess how many vehicles can be simu-
lated at the same time without an automatic reduction in
the RTF of the Gazebo. We saw the RTF deterioration
on scaling in Figure 3 when executing on the fast ma-
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chine with the SOTA approach. Simulating more than 4
vehicles in the slow machine results in the reduction of
RTF and simulating anything beyond 12 vehicles renders
the simulation unresponsive. Simulation of more than 14
vehicles results in an out-of-memory error. Specifying
the RTF to 0.1 by adjusting the max-update rate and
time-step in Gazebo also didn’t help in simulating more
cars on the slow machine with repeatable results.

To scale the simulation with repeatable results using
offloaded dynamics, we first simulated in real-time with
h = 0.01 s, ρ = 100 Hz. We found out that although
the chaotic nature of simulation was mitigated to large
extent (Figure 9), RTF would still fluctuate up to 0.7
even when specifying it to 1.0 for as many as 20 cars.
However, resultant RTF and trajectories were consistent
for all cars when we specified h = 0.01 s, ρ = 10 Hz
(ten-times slower) and throttled the publish rate of each
vehicle at 1/∆T = 20 Hz. RTF remained at 0.1 for the
entirety even after spawning as many as 20 vehicles. At
this point, the scalability of the simulation is only limited
by resources such as RAM and GPU.

C. Trajectory replication from the real-world data

The last simulation experiment we did was to use ve-
locity data gathered from a real-world field experiment.
The real-world data to be used came from the Arizona
ring-road experiment where we deployed Followerstop-
per [13] to dampen phantom traffic waves. In the sim-

ulation, we spawned 21 vehicles f̂∗ ≡ {f̂∗i}, i ∈ [1, 21]
with ui = [vi, 0.065 rad], vi were read from data files ob-
tained during the field experiment [23]. We replicated the
experimental condition by placing 21 vehicles equidistant
on a 260 m circular track (Figure 11). We conducted a set
of simulations to verify if simulated vehicles with given
dynamics provide scalability and repeatability in terms
of vehicle trajectories. As stated in Section I, the SOTA
was not suitable enough to scale the simulation for such
a task. Attempting to control vehicles with velocities
obtained from the field experiment to vehicles in SOTA
simulation didn’t result in expected behavior and vehicles
trajectories were unpredictable, some vehicles crashed
into each other, some vehicles didn’t receive commands
to move at all. With offloaded dynamics, we were able to
conduct simulation after setting h = 0.01 s, ρ = 10 Hz
and 1/∆T = 30 Hz. The resulting time-space diagram
of vehicles from running the simulation twice is drawn in
Figure 12. The red line in Figure 12 denotes the position
of the leader vehicle over time while black lines denote
the positions of all follower vehicles over time. With of-
floaded dynamics approach, we were able to achieve re-
peatable simulation with an error deviation of E = 7.7 m
on an average per vehicle.

FIG. 11. Replicating Arizona ring-road experiment with of-
floaded dynamics in simulation

FIG. 12. Time-space diagram of all 21 vehicles obtained
from simulation with experimentally-obtained velocity pro-
files from field data. We simulated the trajectory of vehicles
in ROS-Gazebo using velocity profiles from Arizona Ring-
road experiment data. Red line indicates position of leader
vehicle in the platoon over time and black lines denote po-
sition of all other vehicles following the leader vehicle. We
ran the simulation twice to assess repeatability. We used
method of offloaded dynamics as described in this article with
h = 0.01 s, ρ = 10 Hz and 1/∆T = 30 Hz for throttling
agent’s state update. Each vehicle on an average had an er-
ror deviation of E = 7.7 m between two simulations.

VI. CONCLUSION AND FUTURE WORKS

In this work, we presented methods for achieving re-
peatable and scalable simulation for autonomous vehicles
in ROS/Gazebo by offloading the state dynamics from
the physics engine, synchronizing the agent’s state up-
date by a director, and specifying the simulation to run
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at a slower than real-time. Such a simulation system
can provide a reliable platform for developing and test-
ing CPS applications within the simulation, cut down the
cost of logistics required for field tests, and provide safety
assurance. During the simulation experiment, we didn’t
establish any formal methods for choosing ∆T or an ap-
propriate RTF. We are looking to extend our proposed
work to provide an algorithm to choose appropriate ∆T
to optimize the RMS error and message loss. Further,
in the upcoming work, we will present our use cases of
feedback control, sensor-assisted driving, and scene in-
teraction with offloaded dynamics.

Code and Data

The dataset used for the simulation, relevant code, the
ROS package, python API used to implement the pro-

posed method, and python notebooks with a pipeline of
simulation experiments is listed at [24].

ACKNOWLEDGMENT

This material is based upon work supported by the National

Science Foundation under Grant Numbers NSF CNS-1446435,

1446690, 1446702, 1446715 (joint with B. Piccoli, D. Work, B. Sei-

bold), CNS-1253334 and CNS-1544395 (joint with R. Sanfelice).

[1] H. K. Khalil and J. W. Grizzle, Nonlinear systems, Vol. 3
(Prentice hall Upper Saddle River, NJ, 2002).

[2] M. Vidyasagar, Nonlinear systems analysis, Vol. 42
(Siam, 2002).

[3] L. Perko, “Nonlinear systems: Local theory,” in Differ-
ential Equations and Dynamical Systems (Springer US,
New York, NY, 1996) pp. 65–178.

[4] A. V. Kamyad, H. H. Mehne, and A. H. Borzabadi, Ap-
plied Mathematics and Computation 167, 1041 (2005).

[5] R. J. Schilling, J. J. Carroll, and A. F. Al-Ajlouni, IEEE
Transactions on neural networks 12, 1 (2001).

[6] G. Palm, Biological Cybernetics 31, 119 (1978).
[7] J. Bouvrie and B. Hamzi, SIAM Journal on Control and

Optimization 55, 2460 (2017).
[8] F. Amigoni, V. Schiaffonati, and M. Verdicchio, in Meth-

ods and experimental techniques in computer engineering
(Springer, 2014) pp. 37–53.

[9] P. Shiakolas, K. Conrad, and T. Yih, International jour-
nal of modelling and simulation 22, 245 (2002).

[10] D. Cumin, C. Chen, and A. F. Merry, Simulation in
Healthcare 10, 336 (2015).

[11] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote,
J. Leibs, R. Wheeler, and A. Y. Ng, in ICRA workshop
on open source software, Vol. 3 (Kobe, Japan, 2009) p. 5.

[12] R. E. Stern, S. Cui, M. L. D. Monache, R. Bhadani,
M. Bunting, M. Churchill, N. Hamilton, H. Pohlmann,
F. Wu, B. Piccoli, et al., Transportation Research Part
C 89, 205 (2017).

[13] R. Bhadani, B. Piccoli, B. Seibold, J. Sprinkle, and D. B.
Work, in 57th IEEE Conference on Decision and Control,
Vol. 57 (IEEE, 2018).

[14] M. L. Delle Monache, T. Liard, A. Rat, R. Stern,
R. Bhadani, B. Seibold, J. Sprinkle, D. B. Work, and
B. Piccoli, in Computational Intelligence and Optimiza-
tion Methods for Control Engineering (Springer, Cham,
2019) pp. 275–299.

[15] G. Gunter, D. Gloudemans, R. E. Stern, S. McQuade,
R. Bhadani, M. Bunting, M. L. D. Monache, B. Seibold,

J. Sprinkle, B. Piccoli, and D. B. Work, IEEE Trans-
actions on Intelligent Transportation Systems , 12 pages
(2020).

[16] R. Bhadani, J. Sprinkle, and M. Bunting, in Proceed-
ings 2nd International Workshop on Safe Control of Au-
tonomous Vehicles (SCAV 2018), Porto, Portugal, 10th
April 2018, Electronic Proceedings in Theoretical Com-
puter Science 269, Vol. 269 (2018) pp. 32–47.

[17] G. Chance, A. Ghobrial, K. McAreavey, S. Lemaignan,
T. Pipe, and K. Eder, arXiv preprint arXiv:2104.06262
(2021).

[18] P. A. Lopez, M. Behrisch, L. Bieker-Walz, J. Erdmann,
Y.-P. Flötteröd, R. Hilbrich, L. Lücken, J. Rummel,
P. Wagner, and E. WieBner, in 2018 21st Interna-
tional Conference on Intelligent Transportation Systems
(ITSC) (IEEE, 2018) pp. 2575–2582.

[19] J. Casas, J. L. Ferrer, D. Garcia, J. Perarnau,
and A. Torday, in Fundamentals of traffic simulation
(Springer, 2010) pp. 173–232.

[20] E. A. Lee, M. Niknami, T. S. Nouidui, and M. Wetter,
in 2015 International Conference on Embedded Software
(EMSOFT) (IEEE, 2015) pp. 115–124.

[21] N. Koenig and A. Howard, in 2004 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems
(IROS)(IEEE Cat. No. 04CH37566), Vol. 3 (IEEE, 2004)
pp. 2149–2154.

[22] K. Zhang, J. Sprinkle, and R. G. Sanfelice, IEEE Trans-
actions on Automation Science and Engineering 13, 479
(2016).

[23] F. Wu, R. E. Stern, S. Cui, M. L. D. Monache,
R. Bhadani, M. Bunting, M. Churchill, N. Hamilton,
F. Wu, B. Piccoli, B. Seibold, J. Sprinkle, and D. B.
Work, “The arizona ring experiments dataset (ared),”
(2018).

[24] Bhadani, Rahul and Sprinkle, Jonathan, Sparkle: En-
abling multi-vehicle simulation with scalability and re-
peatability., Department of Electrical & Computer En-
gineering, The University of Arizona (2022), 0.1.

http://dx.doi.org/10.1007/978-1-4684-0249-0_2
http://dx.doi.org/10.1007/978-1-4684-0249-0_2
http://dx.doi.org/https://doi.org/10.1016/j.amc.2004.08.002
http://dx.doi.org/https://doi.org/10.1016/j.amc.2004.08.002
http://dx.doi.org/10.1109/TITS.2020.3000682
http://dx.doi.org/10.1109/TITS.2020.3000682
http://dx.doi.org/10.1109/TITS.2020.3000682
http://dx.doi.org/10.1109/TASE.2016.2523341
http://dx.doi.org/10.1109/TASE.2016.2523341
http://dx.doi.org/10.1109/TASE.2016.2523341
http://hdl.handle.net/1803/9358
https://github.com/rahulbhadani/sparkle_python
https://github.com/rahulbhadani/sparkle_python
https://github.com/rahulbhadani/sparkle_python

	Repeatable & Scalable Multi-Vehicle Simulation with Offloaded Dynamics using Federated Modeling
	Abstract
	Introduction
	Contribution

	Background
	Plausible Reasons for Simulation Fragility

	Problem Statement: Fragility in Autonomous Vehicle Simulation
	Methods: Mitigating the Fragility of simulation
	Federated Modeling
	Synchronization using Director
	Operating at slower than real-time

	Simulation Experiment and Results
	Simulation Results: Assessing the Repeatability
	Scaling the Simualtion
	Trajectory replication from the real-world data

	Conclusion and Future Works
	Code and Data

	ACKNOWLEDGMENT
	References


